Flexible joints for seismic-resilient design of masonry-infilled RC frames

Sci Data. 2025 Jul 19;12(1):1266. doi: 10.1038/s41597-025-05515-6.

Abstract

Masonry infills are among the most seismically vulnerable components in reinforced concrete frame structures. One promising mitigation strategy involves the use of rubber joints, which has shown potential in prior studies. However, further experimental and numerical investigations are needed to fully understand their effectiveness under realistic seismic conditions and to support evidence-based design. To address this, the EU-funded H2020 project FLExible JOInts for seismic-resilient design of masonry-infilled RC frames (FLEJOI) was conducted within the Engineering Research Infrastructures for European Synergies (ERIES) project. Two identical RC frame prototypes with brick infills and different rubber joint systems were constructed and tested at the Institute of Earthquake Engineering and Engineering Seismology - IZIIS in North Macedonia. The first system reduced panel stiffness and increased damping, while the second completely decoupled the infill from the frame. Both were subjected to extensive shaking table testing. This paper presents the resulting dataset, comprising detailed measurements from sensors monitoring the RC frames, infills, and joints - serving as a valuable benchmark for model validation and future research.