A model for chondrogenic condensations in the developing limb: the role of extracellular matrix and cell tractions

J Embryol Exp Morphol. 1985 Oct:89:93-112.

Abstract

The hyaluronate component of the extracellular matrix is a powerfully hydrophilic polymer, capable of osmotically swelling and deswelling by a volume factor of 5 or more. At the time of cartilage condensation in the limb bud the chondrocytes start to produce hyaluronidase, an enzyme which degrades hyaluronate. The consequent deswelling brings the chondrocytes closer together - close enough for intercellular cell tractions to become effective and intercellular junctions to form. By analysing the physicochemical situation we show how these processes, principally the coupling of the osmotic deswelling with cellular traction forces, can produce cartilage condensation patterns resembling those in the early limb bud. In distinction from our earlier model for chondrogenic condensations this mechanism does not depend on cell motions other than convective transport by contraction.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Extracellular Matrix / physiology
  • Extremities / embryology*
  • Mathematics
  • Models, Biological*
  • Osmosis
  • Osteogenesis*
  • Pressure