Purpose: To evaluate the image quality and clinical utility of ultra-fast T2-weighted imaging (UF-T2WI), which acquires all slice data in 7 s using a single-shot turbo spin-echo technique combined with dual-type deep learning (DL) reconstruction, incorporating DL-based image denoising and super-resolution processing, by comparing UF-T2WI with conventional T2WI.
Material and methods: We analyzed data from 38 patients who underwent both conventional T2WI and UF-T2WI with the dual-type DL-based image reconstruction. Two board-certified radiologists independently performed blinded qualitative assessments of the patients' images obtained with UF-T2WI with DL and conventional T2WI, evaluating the overall image quality, anatomical structure visibility, and levels of noise and artifacts. In cases that included central nervous system diseases, the lesions' delineation was also assessed. The quantitative analysis included measurements of signal-to-noise ratios in white and gray matter and the contrast-to-noise ratio between gray and white matter.
Results: Compared to conventional T2WI, UF-T2WI with DL received significantly higher ratings for overall image quality and lower noise and artifact levels (p < 0.001 for both readers). The anatomical visibility was significantly better in UF-T2WI for one reader, with no significant difference for the other reader. The lesion visibility in UF-T2WI was comparable to that in conventional T2WI. Quantitatively, the SNRs and CNRs were all significantly higher in UF-T2WI than conventional T2WI (p < 0.001).
Conclusion: The combination of SSTSE with dual-type DL reconstruction allows for the acquisition of clinically acceptable T2WI images in just 7 s. This technique shows strong potential to reduce MRI scan times and improve clinical workflow efficiency.
Keywords: Brain; Deep learning reconstruction; MRI; Single-shot turbo spin-echo; Super-resolution.
© 2025. The Author(s).