Deep learning has significantly advanced the field of computer vision; however, developing models that generalize effectively across diverse image domains remains a major research challenge. In this study, we introduce DeepFreqNet, a novel deep neural architecture specifically designed for high-performance multi-domain image classification. The innovative aspect of DeepFreqNet lies in its combination of three powerful components: multi-scale feature extraction for capturing patterns at different resolutions, depthwise separable convolutions for enhanced computational efficiency, and residual connections to maintain gradient flow and accelerate convergence. This hybrid design improves the architecture's ability to learn discriminative features and ensures scalability across domains with varying data complexities. Unlike traditional transfer learning models, DeepFreqNet adapts seamlessly to diverse datasets without requiring extensive reconfiguration. Experimental results from nine benchmark datasets, including MRI tumor classification, blood cell classification, and sign language recognition, demonstrate superior performance, achieving classification accuracies between 98.96% and 99.97%. These results highlight the effectiveness and versatility of DeepFreqNet, showcasing a significant improvement over existing state-of-the-art methods and establishing it as a robust solution for real-world image classification challenges.
Keywords: Blood cells; Computer vision; Deep learning; Hand sign; MRI tumor classification; Transfer learning; Vision transformer.
© 2025. The Author(s).