Multiplexed imaging allows multiple cell types to be simultaneously visualised in a single tissue sample, generating unprecedented amounts of spatially-resolved, biological data. In topological data analysis, persistent homology provides multiscale descriptors of "shape" suitable for the analysis of such spatial data. Here we propose a novel visualisation of persistent homology (PH) and fine-tune vectorisations thereof (exploring the effect of different weightings for persistence images, a prominent vectorisation of PH). These approaches offer new biological interpretations and promising avenues for improving the analysis of complex spatial biological data especially in multiple cell type data. To illustrate our methods, we apply them to a lung data set from fatal cases of COVID-19 and a data set from lupus murine spleen.
Copyright: © 2025 Torras-Pérez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.