Oral delivery of cannabidiol (CBD) is challenging because of its poor water solubility and low bioavailability, which restrict its therapeutic potential. In this study, we used a CBD-loaded oil-in-water nanoemulsion prepared from octenyl succinate anhydride (OSA)-modified starch to address these challenges. The CBD-encapsulated nanoemulsion (CBD-NE) exhibited a uniform particle size of 39.18 ± 0.15 nm, high encapsulation efficiency of 99.80 ± 0.13%, and maintained colloidal stability during storage for 28 days. Simulated gastrointestinal digestion demonstrated that the bioaccessibility of CBD in CBD-NE was higher than that in unformulated CBD. Furthermore, in vitro experiments using RAW264.7 macrophages showed that CBD-NE significantly (p < 0.05) suppressed lipopolysaccharide-induced secretion of the pro-inflammatory cytokines interleukin-6 and tumor necrosis factor-α. Collectively, the improved bioaccessibility and potent anti-inflammatory efficacy of CBD-NE highlight its potential for therapeutic and nutraceutical applications.
© 2025 The Authors. Published by American Chemical Society.