The perhydro derivative of histrionicotoxin reversibly blocks the excitatory ionic transduction system in the synaptic and sarcolemmal membranes of mammalian skeletal muscle cells. The efficacy of perhydrohistrionicotoxin as an antagonist at the post-synaptic membrane is increased by the transient presence of acetylcholine in the endplate of innervated muscles and at extrajunctional receptors in denervated muscles. alpha-Bungarotoxin and [(3)H]monoacetyl-alpha-bungarotoxin block the endplate acetylcholine receptors, each binding to the same extent. The effect of bungarotoxin is partially reversible. These electrophysiological results, together with the effects of perhydrohistrionicotoxin and/or d-tubocurarine on the binding of [(3)H]monoacetyl-alpha-bungarotoxin at endplates of murine diaphragm muscle and on the bungarotoxin-elicited irreversible blockade of neuromuscular transmission, suggest that at least two types of sites participate in the synaptic excitation by acetylcholine. One site, competitively blocked by bungarotoxin and by curare, is presumably the acetylcholine receptor. Binding of bungarotoxin at this site is responsible for an irreversible blockade of neuromuscular transmission. The second site, competitively blocked by bungarotoxin and perhydrohistrionicotoxin, is proposed to be part of the cholinergic ion conductance modulator. Binding of bungarotoxin to this site does not result in an irreversible blockade.