Voltage clamp analysis of embryonic heart cell aggregates

J Gen Physiol. 1979 Feb;73(2):175-98. doi: 10.1085/jgp.73.2.175.

Abstract

The double-microelectrode voltage clamp technique was applied to small spheroidal aggregates of heart cells from 7-d chick embryos. A third intracellular electrode was sometimes used to monitor spatial homogeneity. On average, aggregates were found to deviate from isopotentiality by 12% during the first 3--5 ms of large depolarizing voltage steps, when inward current was maximal, and by less than 3% thereafter. Two components of inward current were recorded: (a) a fast, transient current associated with the rapid upstroke of the action potential, which was abolished by tetrodotoxin (TTX); and (b) a slower inward current related to the plateau, which was not affected by TTX but was blocked by D600. The magnitudes, kinetics, and voltage dependence of these two inward currents and a delayed outward current were similar to those reported for adult cardiac preparations. From a holding potential of -60 mV, the peak fast component at the point of maximal activation (-20 mV) was -185 microA/cm2. This value was about seven times greater than the maximal slow component which peaked at 0 mV. The ratio of rate constants for the decay of the two currents was between 10:1 and 30:1.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Action Potentials / drug effects
  • Animals
  • Cells, Cultured
  • Chick Embryo / physiology*
  • Heart / physiology*
  • In Vitro Techniques
  • Kinetics
  • Membrane Potentials / drug effects
  • Tetrodotoxin / pharmacology*

Substances

  • Tetrodotoxin