Nucleus laminaris (NL) is a third-order auditory nucleus in the avian brain stem which receives spatially-segregated binaural inputs from the second-order magnocellular nuclei. The organization of dendritic structure in NL was examined in Golgi-impregnated brains from hatchling chickens. Quantitative analyses of dendritic size and number were made from camera lucida drawings of 135 neurons sampled from throughout the nucleus. The most significant results of this study may be summarized as follows: (1) The preponderant neuron in n. laminaris may be characterized as having a cylindrical-to-ovoid cell body, about 20 micrometer in diameter. The neurons comprising NL were found to be nearly completely homogeneous in issuing their dendrites in a bipolar fashion: one group of dendrites is clustered on the dorsal surface of the cells, the other group on the ventral. The dendrites of NL are contained within the glia-free neuropil surrounding the nucleus. From the rostromedial to the caudolateral poles of NL there is a gradient of increasing extension of the dendrites, increasing number of tertiary and higher-order dendrites, and increasing distance from the somata of the occurrence of branching. (2) The total dendritic size (sum of the dorsal) and ventral dendritic lengths of the cells) increases 3-fold from the rostromedial to the caudolateral poles of NL. About 50% of the variance in dendritic size is accounted for by the position of the cells in NL, and the gradient of dendritic size increase has the same orientation across NL as the tonotopic gradient of decreasing characteristic frequency in NL. (3) From the rostromedial pole to the caudolateral pole of NL there is an 11-fold decrease in the number of primary dendrites along a gradient coinciding with the length and frequency gradients. Sixty-six percent of the variance in dendrite number is accounted for by position in the nucleus. (4) The correlation of dorsal and ventral dendritic size on a cell-by-cell basis is not high (r = 0.47), indicating a fair amount of variability on the single-cell level. On the other hand, the average dorsal dendritic length within an isofrequency band in NL correlates very highly with the average ventral dendritic length. Thus, on an areal basis, the amount of dendritic surface area offered to the dorsal and ventral afferents is tightly regulated. (5) The dorsal and ventral dendrites have separate gradients of increasing length and number across NL. The dorsal gradients are skewed toward the rostrocaudal axis, while the ventral dendritic gradients are skewed mediolaterally. (6) There was no correlation between either dendritic size or number of primary dendrites and the size of the somata in NL, which remains relatively constant throughout the nucleus. Several hypotheses about the ontogenetic control of dendritic structure are examined in light of the above data. Of these, the hypotheses that the ontogeny of dendritic size and number is largely under afferent control receives a great deal of circumstantial support.