Benzoyl-coenzyme A:glycine N-acyltransferase and phenylacetyl-coenzyme A:glycine N-acyltransferase from bovine liver mitochondria. Purification and characterization

J Biol Chem. 1979 Aug 10;254(15):7230-7.

Abstract

Two closely related acyl-CoA:amino acid N-acyl-transferases were purified to near-homogeneity from preparations of bovine liver mitochondria. Each enzyme consisted of a single polypeptide chain with a molecular weight near 33,000. One transferase was specific for benzoyl-CoA, salicyl-CoA, and certain short straight and branched chain fatty acyl-CoA esters as substrates while the other enzyme specifically used either phenylacetyl-CoA or indoleacetyl-CoA. Acyl-CoA substrates for one transferase inhibited the other. Glycine was the preferred acyl acceptor for both enzymes but either L-asparagine or L-glutamine also served. Peptide products for each transferase were identified by mass spectrometry. Enzymatic cleavage of acyl-CoA was stoichiometric with release of thiol and formation of peptide product. Apparent Km values were low for the preferred acyl-CoA substrates relative to the amino acid acceptors (10(-5) M range compared to greater than 10(-3) M). Both enzymes were inhibited by high nonphysiological concentrations of certain divalent cations (Mg2+, Ni2+, and Zn2+). In contrast to benzoyltransferase, phenylacetyltransferase was sensitive to inhibition by either 10(-4) M 5,5'-dithiobis(2-nitrobenzoate) or 10(-5) M p-chloromercuribenzoate; 10(-4) M phenylacetyl-CoA partially protected phenylacetyltransferase against 5,5'-dithiobis(2-nitrobenzoate) inactivation but 10(-1) M glycine did not. For activity, phenylacetyltransferase required addition of certain monovalent cations (K+, Rb+, Na+, Li+, Cs+, or (NH4)+) to the assay system but benzoyltransferase did not. Preliminary kinetic studies of both transferases were consistent with a sequential reaction mechanism in which the acyl-CoA substrate adds to the enzyme first, glycine adds before CoA leaves, and the peptide product dissociates last.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acyl Coenzyme A
  • Acyltransferases / isolation & purification
  • Acyltransferases / metabolism*
  • Animals
  • Benzoates
  • Cattle
  • Glycine
  • Kinetics
  • Mitochondria, Liver / enzymology*
  • Molecular Weight
  • Phenylacetates
  • Substrate Specificity

Substances

  • Acyl Coenzyme A
  • Benzoates
  • Phenylacetates
  • Acyltransferases
  • Glycine