The range of attractant concentrations for bacterial chemotaxis and the threshold and size of response over this range. Weber law and related phenomena

J Gen Physiol. 1973 Aug;62(2):203-23. doi: 10.1085/jgp.62.2.203.

Abstract

Attractant was added to a suspension of bacteria (the background concentration of attractant) and then these bacteria were exposed to a yet higher concentration of attractant in a capillary. Chemotaxis was measured by determining how many bacteria accumulated in the capillary. The response range for chemotaxis lies between the threshold concentration and the saturating concentration. The breadth of this range is different for attractants detected by different chemoreceptors. Attractants detected by the same chemoreceptor can have their response ranges in widely different places. Over the center of the response range (on a logarithmic scale), bacteria give similar sized responses to similar fractional increases of concentration, i.e. they respond to ratios of attractant concentration, but the response peaks at the center of the range. The size of the response is different for attractants detected by different chemoreceptors. For a detectable response, a smaller increase in attractant concentration is needed for attractants detected by some chemoreceptors than for attractants detected by others. Although the data are inadequate, it appears that the Weber law may be observed over a wide range of concentrations for some attractants but not for others. In the Appendix we aim to explain some of these results in terms of the interaction of an attractant with its chemoreceptor according to the law of mass action.

MeSH terms

  • Aspartic Acid
  • Bacterial Proteins
  • Chemoreceptor Cells / physiology
  • Chemotaxis*
  • Dose-Response Relationship, Drug
  • Escherichia coli / physiology*
  • Galactose
  • Glycosides

Substances

  • Bacterial Proteins
  • Glycosides
  • Aspartic Acid
  • Galactose