Binding of mammalian ribosomes to MS2 phage RNA reveals an overlapping gene encoding a lysis function

Cell. 1979 Oct;18(2):247-56. doi: 10.1016/0092-8674(79)90044-8.


The main binding site for mammalian ribosomes on the single-stranded RNA of bacteriophage MS2 is located nine tenths of the way through the coat protein gene. Translation initiated at an AUG triplet in the +1 frame yields a 75 amino acid polypeptide which terminates within the synthetase gene at a UAA codon, also in the +1 frame. Partial amino acid sequence analysis of the product synthesized in relatively large amounts by mammalian ribosomes confirms this assignment of the overlapping cistron. The same protein is made in an E. coli cell-free system, but only in very small amounts. Analysis of the translation products directed by RNA from op3, a UGA nonsense mutant of phage f2, identifies the overlapping cistron as a lysis gene. In this paper we show that the op3 mutation is a C yield U transition occurring in the second codon of the synthetase cistron, which explains the lowered production of phage replicase (as well as lack of lysis) upon op3 infection of nonpermissive cells. We discuss the properties of the overlapping gene in relation to its lysis function, recognition of the lysis initiator region by E. coli versus eucaryotic ribosomes and op3 as a ribosome binding site mutant for the f2 synthetase cistron.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Base Sequence
  • Binding Sites
  • Coliphages / genetics*
  • Genes, Viral*
  • Genetic Linkage
  • Mutation
  • Nucleic Acid Conformation
  • RNA, Viral / genetics
  • RNA, Viral / metabolism*
  • Ribosomes / metabolism*
  • Viral Proteins / genetics*


  • RNA, Viral
  • Viral Proteins