Prlonged bubble production by transient isobaric counter-equilibration of helium against nitrogen

Undersea Biomed Res. 1979 Jun;6(2):109-25.

Abstract

The production of systemic gas bubbles by isobaric counter-equilibration of helium against 5 atmospheres saturated nitrox (0.3 ATA O2 in both mixes) in awake goats was demonstrated. Sixteen animal exposures (8 dives, 2 animals per dive) to a sudden isobaric gas switch from saturation on N2 to He were conducted; 8 saturations occurred at 132 fsw and 8 at 198 fsw. Central venous bubbles were detected acoustically by means of a Doppler ultrasonic cuff surgically implanted around the inferior vena cava of each animal. Bubbles occurred from 20 to 60 min after the switch in both the 132 fsw and 198 fsw exposures, but were not always present in the 132 fsw exposure, and did not persist for as long. Bubbles or other Doppler events were often detected for the entire isobaric period-12 h-following the gas switch in the 198 fsw exposures. Decompressions were conducted according to the USN saturation tables and were uneventful, with only occasional bubbles. Supersaturation ratios calculated to have occurred for a considerable period after the gas switch were approximately 1.15 (tissue gas tension pi, divided by ambient hydrostatic pressure, P) with maxima at 1.26 for the faster tissues. These values are limiting ones in USN decompression only for the slower tissues. In general, therefore, these results argue for reducing the permissible ascent criteria for the faster tissues-assuming bubbles are to be avoided-and allowing more time at stops for non-saturation decompression. Gas switches from a more soluble to a less soluble and/or more rapidly diffusing gas should therefore be avoided until physiological limits are well worked out.

MeSH terms

  • Animals
  • Atmospheric Pressure
  • Decompression Sickness / blood*
  • Diffusion
  • Doppler Effect
  • Gases / blood*
  • Goats
  • Helium / blood*
  • Mathematics
  • Nitrogen / blood*
  • Ultrasonography

Substances

  • Gases
  • Helium
  • Nitrogen