Oxygen intake in track and treadmill running with observations on the effect of air resistance

J Physiol. 1970 May;207(3):823-35. doi: 10.1113/jphysiol.1970.sp009097.


1. The relation of V(O2) and speed was measured on seven athletes running on a cinder track and an all-weather track. The results were compared with similar observations on four athletes running on a treadmill.2. In treadmill running the relation was linear and the zero intercept coincided with resting V(O2).3. In track running the relation was curvilinear, but was adequately represented by a linear regression over a range of speeds extending from 8.0 km/hr (2.2 m/sec) to 21.5 km/hr (6.0 m/sec). The slope of this line was substantially steeper than the regression line slope for treadmill running.4. The influence of air resistance in running was estimated from measurements of V(O2) on a subject running on a treadmill at constant speed against wind of varying velocity.5. The extra O(2) intake (DeltaV(O2)) associated with wind increased as the square of wind velocity. If wind velocity and running velocity are equal, as in running on a track in calm air, DeltaV(O2) will increase as the cube of velocity.6. It was estimated that the energy cost of overcoming air resistance in track running is about 8% of total energy cost at 21.5 km/hr (5000 m races) and 16% for sprinting 100 m in 10.0 sec.

MeSH terms

  • Adult
  • Air*
  • Altitude
  • Atmospheric Pressure
  • Humans