The metabolism of 3-methylcholanthrene and some related compounds by rat-liver homogenates

Biochem J. 1966 Jan;98(1):215-28. doi: 10.1042/bj0980215.

Abstract

1. A chromatographic investigation of the products of the metabolism of 3-methylcholanthrene by rat-liver homogenates showed the formation of compounds with the properties of 1- and 2-hydroxy-3-methylcholanthrene, cis- and trans-1,2-dihydroxy-3-methylcholanthrene and 11,12-dihydro-11,12-dihydroxy-3-methylcholanthrene. A glutathione conjugate that is probably S-(11,12-dihydro-12-hydroxy-3-methyl-11-cholanthrenyl)glutathione was also detected. 3-Methylcholanthrene-1- and -2-one and -1,2-quinone were also present, but these products may have arisen by the chemical oxidation of the corresponding hydroxy compounds. 2. Other metabolic products were tentatively identified as 9- and 10-hydroxy-3-methylcholanthrene, 4,5-dihydro-4,5-dihydroxy-3-methylcholanthrene and 3-hydroxymethylcholanthrene. 3. 1- and 2-Hydroxy-3-methylcholanthrene were converted by homogenates into the related ketones and into products with the properties of cis- and trans-1,2-dihydroxy-3-methylcholanthrene: 3-methylcholanthren-1- and -2-one were converted into their related hydroxy compounds and into the isomeric 1,2-dihydroxy compounds. The isomeric 1,2-dihydroxy compounds were each partly converted into the other isomer by these homogenates. All the above substrates also yielded products that appeared to be derivatives of 3-hydroxymethylcholanthrene. 4. 3-Methylcholanthrylene was converted by rat-liver homogenates into products with the properties of trans-1,2-dihydroxy-3-methylcholanthrene, 2-hydroxy-3-methylcholanthrene and 3-methylcholanthren-2-one. A small amount of the cis-1,2-dihydroxy compound was also formed, together with a glutathione conjugate that is possibly S-(2-hydroxy-3-methyl-1-cholanthrenyl)glutathione or its positional isomer. 5. An unidentified product was detected in the metabolism of 3-methylcholanthrene, the monohydroxy compounds, the ketones and the dihydroxy compounds, the formation of which appeared to involve metabolism at the 1,2-bond. 6. 11,12-Epoxy-11,12-dihydro-3-methylcholanthrene was converted by rat-liver homogenates into products with the properties of 11-hydroxy-3-methylcholanthrene (or, less likely, the 12-isomer), 11,12-dihydro-11,12-dihydroxy-3-methylcholanthrene and the glutathione conjugate described above. Products with the properties of these compounds were formed when the epoxide was allowed to react with glutathione in an aqueous medium. 7. Mouse-liver homogenate converted 3-methylcholanthrene into products with the chromatographic properties of 1- and 2-hydroxy-3-methylcholanthrene, cis- and trans-1,2-dihydroxy-3-methylcholanthrene, 11,12-dihydro-11,12-dihydroxy-3-methylcholanthrene, 3-methylcholanthrene-1- and -2-one and -1,2-quinone and the unidentified hydroxy-3-methylcholanthrenes. 8. The syntheses of cis- and trans-1,2-dihydroxy-3-methylcholanthrene, 3-methylcholanthren-2-one, 2-hydroxy-3-methylcholanthrene, 3-methylcholanthrylene, 11,12-epoxy-11,12-dihydro-3-methylcholanthrene and trans-11,12-dihydro-11,12-dihydroxy-3-methylcholanthrene are described.

MeSH terms

  • Animals
  • Chemistry Techniques, Analytical
  • Chromatography, Thin Layer
  • In Vitro Techniques
  • Liver / metabolism*
  • Methylcholanthrene / metabolism*
  • Rats
  • Subcellular Fractions / metabolism

Substances

  • Methylcholanthrene