The metabolism of 2-chloro-1-(2',4'-dichlorophenyl)vinyl diethyl phosphate (Chlorfenvinphos) in the dog and rat

Biochem J. 1967 Jan;102(1):133-42. doi: 10.1042/bj1020133.

Abstract

1. A single oral dose of [(14)C]Chlorfenvinphos to rats is quantitatively eliminated in 4 days. Rats do not show a sex difference in the elimination pattern and show only a small degree of biological variation in the total excretion data. Of the label 87.2% is excreted in the urine (67.5% in the first day after dosage), 11.2% in the faeces and 1.4% in the expired gases; less than 0.9% of (14)C is present in the gut and contents after 4 days. 2. After oral administration of [(14)C]Chlorfenvinphos to dogs, 94.0% (91.8-97.6%) of the (14)C is excreted in the urine and faeces during 4 days. Dogs do not show a sex difference in the pattern of elimination, and excretion of radioactivity in the urine is very rapid: 86.0% of (14)C during 0-24hr. 3. Chlorfenvinphos is completely metabolized in rats and dogs: unchanged Chlorfenvinphos is absent from the urine and from the carcass, when elimination is complete. In rats, 2-chloro-1-(2',4'-dichlorophenyl)vinyl ethyl hydrogen phosphate accounts for 32.3% of a dose of Chlorfenvinphos, [1-(2',4'-dichlorophenyl)ethyl beta-d-glucopyranosid]uronic acid for 41.0%, 2,4-dichloromandelic acid for 7.0%, 2,4-dichlorophenylethanediol glucuronide for 2.6% and 2,4-dichlorohippuric acid for 4.3%; in dogs, 2-chloro-1-(2',4'-dichlorophenyl)vinyl ethyl hydrogen phosphate accounts for 69.6%, [1-(2',4'-dichlorophenyl)ethyl beta-d-glucopyranosid] uronic acid for 3.6%, 2,4-dichloromandelic acid for 13.4% and 2,4-dichlorophenylethanediol glucuronide for 2.7%. 4. Dogs and rats show a species difference in the rate of excretion of (14)C in the urine, and in the proportions of the metabolites, with the exception of 2,4-dichlorophenylethanediol glucuronide, that are excreted in the urine. Alternative explanations for the latter species difference are suggested. 5. 2-Chloro-1-(2',4'-dichlorophenyl)vinyl ethyl hydrogen phosphate and 2,4-dichlorophenacyl chloride probably lie on the main metabolic pathway of Chlorfenvinphos, since, in common with that insecticide, they give rise to [1-(2',4'-dichlorophenyl)ethyl beta-d-glucopyranosid]uronic acid and 2,4-dichloromandelic acid as major metabolites in the urine. 6. The proposed scheme for the metabolism of Chlorfenvinphos represents a detoxication mechanism.

MeSH terms

  • Animals
  • Biotransformation
  • Carbon Isotopes
  • Chromatography, Paper
  • Chromatography, Thin Layer
  • Feces
  • Female
  • Glucuronates / urine
  • Insecticides / metabolism*
  • Male
  • Mandelic Acids / urine
  • Phosphates / metabolism*
  • Rats

Substances

  • Carbon Isotopes
  • Glucuronates
  • Insecticides
  • Mandelic Acids
  • Phosphates