Intracellular ATP directly blocks K+ channels in pancreatic B-cells

Nature. 1984 Sep 20-26;311(5983):271-3. doi: 10.1038/311271a0.


It is known that glucose-induced depolarization of pancreatic B-cells is due to reduced membrane K+-permeability and is coupled to an increase in the rate of glycolysis, but there has been no direct evidence linking specific metabolic processes or products to the closing of membrane K+ channels. During patch-clamp studies of proton inhibition of Ca2+-activated K+ channels [GK(Ca)] in B-cells, we identified a second K+-selective channel which is rapidly and reversibly inhibited by ATP applied to the cytoplasmic surface of the membrane. This channel is spontaneously active in excised patches and frequently coexists with GK(Ca) channels yet is insensitive to membrane potential and to intracellular free Ca2+ and pH. Blocking of the channel is ATP-specific and appears not to require metabolism of the ATP. This ATP-sensitive K+ channel [GK(ATP)] may be a link between metabolism and membrane K+-permeability in pancreatic B-cells.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine Triphosphate / physiology*
  • Animals
  • Cell Membrane Permeability
  • Cells, Cultured
  • Cytoplasm / physiology
  • Electric Conductivity
  • Ion Channels / physiology*
  • Islets of Langerhans / physiology*
  • Potassium / metabolism*
  • Rats


  • Ion Channels
  • Adenosine Triphosphate
  • Potassium