High affinity, calcium-stimulated adenosine triphosphatase activity in the particulate fraction of rat pancreatic acini

J Biol Chem. 1984 Jun 10;259(11):7061-6.

Abstract

Adenosine triphosphatase activity which is Mg2+-dependent and stimulated by submicromolar concentrations of Ca2+ (as Ca . ATP) was identified in the total particulate fraction of rat pancreatic acini. Half-maximal activity (V0.5) is obtained at 100.1 +/- 6 nM Ca . ATP with a Hill coefficient of 2.2 +/- 0.1 (mean +/- S.E.; n = 4). Maximal activity was 75 +/- 19 pmol of Pi released from ATP minute-1 microgram of membrane protein-1 (mean +/- S.E.; n = 7). High affinity Ca2+-ATPase activity was unaffected by ouabain, Na+, K+, La3+, and added calmodulin. Activity was slightly reduced by ruthenium red (0.1 mM) and by oligomycin (80 micrograms/ml) but was reduced almost 50% by the phenothiazine derivative fluphenazine in a dose-related and Ca2+-dependent manner. Hydrolysis of p-nitrophenyl phosphate was 9% of the rate of ATP hydrolysis and was independent of Ca2+ concentration. However, ADP, GTP, UTP, and ITP were hydrolyzed at 76-93% the rate that ATP was hydrolyzed with V0.5 values and Hill coefficients similar to those of Ca . ATP. We conclude that rat pancreatic acini contain an enzyme for active Ca2+ translocation: ATPase activity that is Mg2+-dependent and stimulated by submicromolar concentrations of Ca . ATP. Substrate hydrolysis appears to involve positive cooperative interactions of multiple ligand-binding sites and may be regulated in part by calmodulin.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Animals
  • Calcium / metabolism
  • Calcium-Transporting ATPases / metabolism*
  • Fluphenazine / pharmacology
  • Hydrolysis
  • Kinetics
  • Magnesium / metabolism
  • Male
  • Pancreas / enzymology*
  • Rats
  • Rats, Inbred Strains

Substances

  • Adenosine Triphosphate
  • Calcium-Transporting ATPases
  • Magnesium
  • Fluphenazine
  • Calcium