Liposome-mediated delivery of deoxyribonucleic acid to cells: enhanced efficiency of delivery related to lipid composition and incubation conditions

Biochemistry. 1981 Nov 24;20(24):6978-87. doi: 10.1021/bi00527a031.


Delivery of liposome-encapsulated simian virus 40 (SV40) DNA to African green monkey Related to been used as a probe to study liposome--cell interactions and to determine conditions which favor the intracellular delivery of liposome contents to cells. The efficiency of DNA delivery by various liposome preparations (monitored by infectivity assays) was found to be dependent both on the magnitude of vesicle binding to cells and on the resistance of liposomes to cell-induced leakage of contents. Acidic phospholipids were much more effective in both binding and delivery, and phosphatidylserine (PS) was the best in both aspects. The inclusion of 50 mol % cholesterol in liposomes reduces the cell-induced leakage of vesicle contents (2--5-fold) and substantially enhances the delivery of DNA to cells (2--10-fold). Following incubation of cells with negatively charged liposomes containing SV40 DNA, infectivity can be enhanced greatly by brief exposure of the cells to glycerol solutions. In contrast, only slight enhancement by glycerol was observed for SV40 DNA encapsulated in neutral or positively charged liposomes. The results of competition experiments between empty phosphatidylcholine liposomes and DNA-containing PS liposomes also suggest possible differences in the interaction of neutral and negatively charged liposome preparations with cells. Morphological studies indicate that the glycerol treatment stimulates membrane ruffling and vacuolization and suggest that the enhanced uptake of liposomes occurs by an endocytosis-like process. Results obtained with metabolic inhibitors are also consistent with the interpretation that the enhancement of liposome delivery in glycerol-treated cells occurs via an energy-dependent endocytotic pathway. Pretreatment of cells with chloroquine, a drug which alters lysosomal activity, further enhanced infectivity in glycerol-treated cells (4-fold). This observation suggests the involvement of a lysosomal processing step at some point in the expression of liposome-encapsulated DNA and, more importantly, illustrates the possibility of altering cellular mechanism to engineer more efficient delivery by liposomes. Under optimal conditions determined in this study, the efficiency of liposome-mediated SV40 DNA delivery was increased more than 1000-fold over that obtained by simply incubating cells with liposomes. It is also demonstrated that these conditions enhance delivery of other molecules, besides DNA, which are encapsulated in liposomes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Line
  • Cell Transformation, Viral*
  • Chlorocebus aethiops
  • Cholesterol / pharmacology
  • DNA, Viral / genetics
  • DNA, Viral / metabolism*
  • Glycerol / pharmacology
  • Kidney
  • Kinetics
  • Liposomes*
  • Microscopy, Electron
  • Phosphatidylserines
  • Simian virus 40 / genetics*


  • DNA, Viral
  • Liposomes
  • Phosphatidylserines
  • Cholesterol
  • Glycerol