Analysis of the pathophysiology of hypokalemic paralysis, as it occurs in barium poisoning, chronic potassium deficiency, and thyrotoxicosis, suggests that these disorders may have a similar mechanism. An increased ratio of muscle sodium permeability to potassium permeability reduces the ionic diffusion potential, while the resting membrane potential is sustained by an increase of Na-K pump electrogenesis. The result is that potassium entry (the sum of active and passive influx) exceeds potassium efflux; this causes a large shift of extracellular potassium into muscle until the Na-K pump turns off, leading to depolarization and paralysis. The primary defect in familial hypokalemic periodic paralysis, as in the example of barium poisoning, may be a marked reduction of muscle permeability to potassium.