Increased Ca++, Mg++, and Na+ + K+ ATPase activities in erythrocytes of sickle cell anemia

Blood. 1982 Dec;60(6):1332-6.

Abstract

To determine whether diminished activity of the Ca++ extrusion pump could account for the high levels of red blood cell (RBC) Ca++ in sickle cell anemia (SS), we measured calmodulin-sensitive Ca++ ATPase activity in normal and SS RBC. Hemolysates prepared with saponin were compared, since such preparations expressed maximum ATPase activities, exceeding isolated membranes or reconstituted systems of membranes plus cytosol, SS RBC hemolysates had greater Ca++ ATPase activity than normal hemolysates; they exhibited higher Mg++ and Na+ + K+ ATPase activities as well. Assays on density (age) fractions of SS and normal red cells demonstrated that all ATPase activities were highest in low density (young) cells, and activities in SS red cells exceeded those in normals in all fractions studied. Thus, when studied under conditions that maximize enzyme activity, Ca++ ATPase activity, like Mg++ and Na+ + K+ ATPase, is actually increased in SS RBC, probably due to the young red cell population present. The elevated Ca++ levels in these cells are more likely due to an increased Ca++ leak or abnormal calcium binding than to defective extrusion by the ATPase pump.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine Triphosphatases / blood
  • Anemia, Sickle Cell / blood*
  • Biological Transport, Active
  • Calcium-Transporting ATPases / blood
  • Centrifugation, Density Gradient
  • Erythrocyte Aging
  • Erythrocyte Count
  • Erythrocytes, Abnormal / enzymology*
  • Humans
  • Magnesium / blood
  • Sodium-Potassium-Exchanging ATPase / blood

Substances

  • Adenosine Triphosphatases
  • Calcium-Transporting ATPases
  • Sodium-Potassium-Exchanging ATPase
  • Magnesium