Translational control of IS10 transposition

Cell. 1983 Sep;34(2):683-91. doi: 10.1016/0092-8674(83)90401-4.


We present genetic evidence that insertion sequence IS10, the active element in transposon Tn10, can negatively control expression of its own transposase protein at the translational level. This control process is manifested in trans in a phenomenon called "multicopy inhibition": the presence of a multicopy plasmid containing IS10 inhibits transposition of a single copy chromosomal Tn10 element by reducing its ability to express transposition functions. Fusion analysis suggests that expression is reduced at the translational and not the transcriptional level. Only the outer 180 bp of IS10-Right are required on the plasmid for full inhibition. Plasmid-encoded transposase protein is not involved. The genetic structure of the essential plasmid region and the effects of point and deletion mutations on multicopy inhibition lead us to propose that inhibition of transposase translation occurs by direct pairing between the transposase messenger RNA and a small, complementary, regulatory RNA specified by the IS10-encoded pOUT promoter.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • DNA Transposable Elements*
  • DNA, Bacterial / analysis
  • Plasmids
  • Protein Biosynthesis*


  • DNA Transposable Elements
  • DNA, Bacterial