Exchange behavior of the H-bonded amide protons in the 3 to 13 helix of ribonuclease S

J Mol Biol. 1983 Sep 5;169(1):299-323. doi: 10.1016/s0022-2836(83)80185-5.

Abstract

The preceding article shows that there are eight highly protected amide protons in the S-peptide moiety of RNAase S at pH 5, 0 degrees C. The residues with protected NH protons are 7 to 13, whose amide protons are H-bonded in the 3 to 13 alpha-helix, and Asp 14, whose NH proton is H-bonded to the CO group of Val47. We describe here the exchange behavior of these eight protected protons as a function of pH. Exchange rates of the individual NH protons are measured by 1H nuclear magnetic resonance in D2O. A procedure is used for specifically labeling with 1H only these eight NH protons. The resonance assignments of the eight protons are made chiefly by partial exchange, through correlating the resonance intensities in spectra taken when the peptide is bound and when it is dissociated from S-protein in 3.5 M-urea-d4, in D2O, pH 2.3, -4 degrees C. The two remaining assignments are made and some other assignments are checked by measurements of the nuclear Overhauser effect between adjacent NH protons of the alpha-helix. There is a transition in exchange behavior between pH 3, where the helix is weakly protected against exchange, and pH 5 where the helix is much more stable. At pH 3.1, 20 degrees C, exchange rates are uniform within the helix within a factor of two, after correction for different intrinsic exchange rates. The degree of protection within the helix is only 10 to 20-fold at this pH. At pH 5.1, 20 degrees C, the helix is more stable by two orders of magnitude and exchange occurs preferentially from the N-terminal end. At both pH values the NH proton of Asp 14, which is just outside the helix, is less protected by an order of magnitude than the adjacent NH protons inside the helix. Opening of the helix can be observed below pH 3.7 by changes in chemical shifts of the NH protons in the helix. At pH 2.4 the changes are 25% of those expected for complete opening. Helix opening is a fast reaction on the n.m.r. time scale (tau much less than 1 ms) unlike the generalized unfolding of RNAase S which is a slow reaction. Dissociation of S-peptide from S-protein in native RNAase S at pH 3.0 also is a slow reaction. Opening of the helix below pH 3.7 is a two-state reaction, as judged by comparing chemical shifts with exchange rates. The exchange rates at pH 3.1 are predicted correctly from the changes in chemical shift by assuming that helix opening is a two-state reaction. At pH values above 3.7, the nature of the helix opening reaction changes. These results indicate that at least one partially unfolded state of RNAase S is populated in the low pH unfolding transition.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amides*
  • Amino Acid Sequence
  • Animals
  • Cattle
  • Chemical Phenomena
  • Chemistry
  • Hydrogen Bonding
  • Hydrogen-Ion Concentration
  • Kinetics
  • Magnetic Resonance Spectroscopy
  • Peptides / analysis
  • Protein Conformation
  • Protons*
  • Ribonucleases*

Substances

  • Amides
  • Peptides
  • Protons
  • Ribonucleases
  • ribonuclease S