Cerebral phospholipid content and Na+,K+-ATPase activity during ischemia and postischemic reperfusion in the mongolian gerbil

J Neurochem. 1984 Aug;43(2):320-7. doi: 10.1111/j.1471-4159.1984.tb00903.x.

Abstract

Using bilateral carotid artery occlusion in adult gerbils we examined the effects of ischemia and ischemia/reperfusion on cerebral phospholipid content and Na+,K+-ATPase (EC 3.6.1.3) activity. In contrast to the large changes in phospholipid content and membrane-bound enzyme activity that have been observed in liver and heart tissues, we observed relatively small changes in the cerebral content of total phospholipid, phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylethanolamine (PE) following ischemic intervals of up to 240 min. Following 15 min of ischemia the cerebral content of sphingomyelin (SM) was decreased to less than 50% of control values but returned to near-normal levels with longer ischemic periods. Significant decreases in the cerebral content of phosphatidylinositol (PI) and phosphatidic acid (PA) were observed following shorter intervals of ischemia (15-45 min). Na+,K+-ATPase activity of cerebral homogenates prepared from the brains of gerbils subjected to 30-240 min of ischemia was decreased but significantly different from control activity only after 30 min of ischemia (-29%, p less than or equal to 0.05). With the exception of PS, reperfusion for 60 min following 60 min of ischemia resulted in marked increases in cerebral phospholipid content with PC, SM, PI, and PA levels exceeding and PE levels equal to preischemic values. Longer periods of reperfusion (180 min) resulted in decreases in cerebral phospholipid content toward (PC, SM, PI, and PA) or below (PE) preischemic levels. In contrast, the cerebral content of PS significantly decreased during reperfusion (-51% at 60 min, p less than or equal to 0.05) and remained below preischemic values even after 180 min of reperfusion.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Brain / metabolism*
  • Female
  • Gerbillinae
  • Ischemic Attack, Transient / metabolism*
  • Kinetics
  • Perfusion
  • Phosphatidic Acids / metabolism
  • Phosphatidylcholines / metabolism
  • Phosphatidylethanolamines / metabolism
  • Phosphatidylinositols / metabolism
  • Phosphatidylserines / metabolism
  • Phospholipids / metabolism*
  • Sodium-Potassium-Exchanging ATPase / metabolism*
  • Sphingomyelins / metabolism

Substances

  • Phosphatidic Acids
  • Phosphatidylcholines
  • Phosphatidylethanolamines
  • Phosphatidylinositols
  • Phosphatidylserines
  • Phospholipids
  • Sphingomyelins
  • Sodium-Potassium-Exchanging ATPase