DNA degradation, UV sensitivity and SOS-mediated mutagenesis in strains of Escherichia coli deficient in single-strand DNA binding protein: effects of mutations and treatments that alter levels of Exonuclease V or recA protein

Mol Gen Genet. 1983;190(1):92-100. doi: 10.1007/BF00330329.

Abstract

Certain strains suppress the temperature-sensitivity caused by ssb-1, which encodes a mutant ssDNA binding protein (SSB). At 42 degrees C, such strains are extremely UV-sensitive, degrade their DNA extensively after UV irradiation, and are deficient in UV mutability and UV induction of recA protein synthesis. We transduced recC22, which eliminates Exonuclease V activity, and recAo281, which causes operator-constitutive synthesis of recA protein, into such an ssb-1 strain. Both double mutants degraded their DNA extensively at 42 degrees C after UV irradiation, and both were even more UV-sensitive than the ssb-1 single mutant. We conclude that one or more nucleases other than Exonuclease V degrades DNA in the ssb recC strain, and that recA protein, even if synthesized copiously, can function efficiently in recombinational DNA repair and in control of post-UV DNA degradation only if normal SSB is also present. Pretreatment with nalidixic acid at 30 degrees C restored normal UV mutability at 42 degrees C, but did not increase UV resistance, in an ssb-1 strain. Another ssb allele, ssb-113, which blocks SOS induction at 30 degrees C, increases spontaneous mutability more than tenfold. The ssb-113 allele was transduced into the SOS-constitutive recA730 strain SC30. This double mutant expressed the same elevated spontaneous and UV-induced mutability at 30 degrees C as the ssb+ recA730 strain, and was three times more UV-resistant than its ssb-113 recA+ parent. We conclude that ssb-1 at 42 degrees C and ssb-113 at 30 degrees C block UV-induced activation of recA protease, but that neither allele interferes with subsequent steps in SOS-mediated mutagenesis.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Bacterial Proteins / metabolism*
  • Carrier Proteins / genetics*
  • DNA Repair
  • DNA Replication
  • DNA, Bacterial / metabolism
  • Escherichia coli / genetics*
  • Escherichia coli / metabolism
  • Escherichia coli / radiation effects
  • Escherichia coli Proteins*
  • Exodeoxyribonuclease V
  • Exodeoxyribonucleases / metabolism*
  • Mutation
  • Nalidixic Acid / pharmacology
  • Rec A Recombinases
  • Ultraviolet Rays

Substances

  • Bacterial Proteins
  • Carrier Proteins
  • DNA, Bacterial
  • Escherichia coli Proteins
  • Nalidixic Acid
  • Rec A Recombinases
  • Exodeoxyribonucleases
  • Exodeoxyribonuclease V
  • exodeoxyribonuclease V, E coli