Lens lipids

Curr Eye Res. 1984 Nov;3(11):1337-59. doi: 10.3109/02713688409007421.


Lens cells can synthesize, degrade, and remodel lipids. Endogenous lipid synthesis, in conjunction with uptake of exogenous cholesterol and certain fatty acids, leads to the formation of a plasma membrane that is especially rich in sphingomyelin, cholesterol, and long-chain saturated fatty acids. As a result of this unusual lipid composition, lens membranes have very low fluidity, which is restricted even further by lipid-protein interactions. The composition and metabolism of membrane lipids may affect the formation of various types of cataracts. Diets rich in vegetable oils offer some protection against the formation of osmotic cataracts and the hereditary cataract of the RCS rat, although the mechanism of this effect is not clear. Vitamin E also protects against the formation of several types of cataract in vivo and in vitro, suggesting that lipid peroxidation may play a role in cataractogenesis. Certain drugs which inhibit lipid synthesis or degradation are cataractogenic, and a deficiency in cataractogenic, and a deficiency in phosphatidylserine is associated with a loss of Na+/K+ ATPase activity in several types of cataract. Human senile cataracts show a marked loss of protein-lipid interactions, although the overall lipid composition is normal. This loss of protein-lipid interactions may be related to oxidative damage to membrane-associated proteins. Interestingly, the decrease in the fluidity of lens membranes with age would counteract the formation of aqueous pores in the membrane, which can result from the oxidative cross-linking of membrane-associated proteins. Certain pathways of lipid metabolism seem to have regulatory functions. Among these are phosphatidylinositol turnover, phosphatidylethanolamine methylation, and arachidonic acid metabolism. All of these pathways function in the lens. Phosphatidylinositol turnover is correlated with the rate of lens epithelial cell division, while phosphatidylethanolamine methylation seems to be related to the initiation of lens fiber cell formation. Both pathways are associated with the release and metabolism of arachidonic acid in other cell types. While it is not known whether phosphatidylinositol turnover or phosphatidylethanolamine methylation result in the release of arachidonic acid in the lens, recent work has shown that lens cells from a variety of species can metabolize arachidonic acid by both the cyclooxygenase and lipoxygenase pathways. The possible physiological significance of these metabolites to the lens is yet to be determined.

Publication types

  • Comparative Study
  • Review

MeSH terms

  • Animals
  • Cataract / etiology
  • Cataract / metabolism
  • Cell Membrane / metabolism
  • Glycolipids / metabolism
  • Humans
  • Lens, Crystalline / metabolism*
  • Lipid Metabolism*
  • Membrane Fluidity
  • Membrane Lipids / metabolism
  • Membrane Proteins / metabolism
  • Phospholipids / metabolism
  • Sterols / metabolism


  • Glycolipids
  • Membrane Lipids
  • Membrane Proteins
  • Phospholipids
  • Sterols