Previous studies carried out in mammalian systems indicated that an organism's NAD+/NADH balance is carefully regulated but can be destabilized by dietary stresses. Since Drosophila alcohol dehydrogenase (ADH) uses NAD+ to remove a hydrogen from ethanol in the first step of alcohol catabolism, it is possible that under alcohol stress conditions the in vivo NAD+ levels in Drosophila may decrease. In this study genetically homozygous flies were stressed with maximally sublethal concentrations of ethanol (10%) for periods of up to 24 hr. The results indicate that NAD+ levels do in fact drop by at least 20% in response to ethanol stress. Evidence is presented that suggests that this decrease is the direct result of ADH-mediated catabolism.