Cytotoxicity and mutagenicity of aflatoxin dichloride in normal and repair deficient diploid human fibroblasts

Chem Biol Interact. 1984 Jun;50(1):59-76. doi: 10.1016/0009-2797(84)90132-7.

Abstract

The cytotoxic and mutagenic effect of aflatoxin B1-dichloride (AFB1-Cl2), a direct-acting carcinogen which is a model for the proposed ultimate reactive metabolite of AFB1 (the 2,3-epoxide), was compared in normal, repair-proficient, diploid human fibroblasts and in complementation Group A xeroderma pigmentosum cells (XP12BE) which are virtually incapable of excision repair of DNA damage induced by ultraviolet radiation, the 7,8-diol-9,10-epoxide of benzo[alpha]pyrene, and several reactive aromatic amide derivatives. The XP cells were significantly more sensitive than normal to the cytotoxic and mutagenic effects of AFB1-Cl2, not only as a function of concentration administered but also of the number of AFB1-Cl2 residues initially bound to DNA. Cytotoxicity was determined from survival of colony-forming ability; resistance to 6-thioguanine was the genetic marker used for mutagenicity. We compared the rate of loss of AFB1-Cl2-DNA adducts from cells treated and held in the non-dividing state (confluent) over several days, as well as their ability to recover from the potentially mutagenic and/or cytotoxic effects of the agent. AFB1-Cl2 residues were lost from both strains of cells and both exhibited a gradual increase in survival. However, the rate of loss of adducts from the DNA in the normal cells was more rapid than in XP cells and they exhibited recovery from higher doses of AFB1-Cl2 than XP cells. The major primary DNA adduct formed in the human cells and in isolated DNA was a chemically unstable guanine derivative which could undergo a change in structure with time posttreatment to form a more stable secondary adduct. The cytotoxic effect of AFB1-Cl2 was highly correlated with the presence of either of these guanine adducts. Evidence suggests that the primary adduct is an N7-guanine adduct. The kinetics of the loss of this guanine and its transformation into the more stable secondary adduct resembled that reported recently for the major primary DNA adduct formed by the reaction of AFB1 at the N-7 position of guanine in the DNA of normal and XP cells and its transformation into the putative AFB1-ring opened triamino pyrimidyl structure.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aflatoxin B1
  • Aflatoxins / toxicity*
  • Animals
  • Cattle
  • Cell Line
  • Cell Survival / drug effects
  • Chromatography, High Pressure Liquid
  • DNA / metabolism
  • DNA Repair*
  • Fibroblasts / drug effects*
  • Humans
  • Infant, Newborn
  • Male
  • Mutagenicity Tests
  • Salmon

Substances

  • Aflatoxins
  • DNA
  • Aflatoxin B1