Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Jul;127(1):193-203.

Kinetic Properties of Serratia Marcescens Adenosine 5'-diphosphate Glucose Pyrophosphorylase

Free PMC article

Kinetic Properties of Serratia Marcescens Adenosine 5'-diphosphate Glucose Pyrophosphorylase

J Preiss et al. J Bacteriol. .
Free PMC article


The regulatory properties of partially purified adenosine 5'-diphosphate-(ADP) glucose pyrophosphorylase from two Serratia marcescens strains (ATCC 274 and ATCC 15365) have been studied. Slight or negligible activation by fructose-P2, pyridoxal-phosphate, or reduced nicotinamide adenine dinucleotide phosphate (NADPH) was observed. These compounds were previously shown to be potent activators of the ADPglucose pyrophosphorylases from the enterics, Salmonella typhimurium, Enterobacter aerogenes, Enterobacter cloacae, Citrobacter freundii, Escherichia aurescens, Shigella dysenteriae, and Escherichia coli. Phosphoenolpyruvate stimulated the rate of ADPglucose synthesis catalyzed by Serratia ADPglucose pyrophosphorylase about 1.5- to 2-fold but did not affect the S0.5 values (concentration of substrate required for 50% maximal stimulation) of the substrates, alpha-glucose-1-phosphate, and adenosine 5'-triphosphate. Adenosine 5'-monophosphate (AMP), a potent inhibitor of the enteric ADPglucose pyrophosphorylase, is an effective inhibitor of the S. marcescens enzyme. ADP also inhibits but is not as effective as AMP. Activators of the enteric enzyme counteract the inhibition caused by AMP. This is in contrast to what is observed for the S. marcescens enzyme. Neither phosphoenolpyruvate, fructose-diphosphate, pyridoxal-phosphate, NADPH, 3-phosphoglycerate, fructose-6-phosphate, nor pyruvate effect the inhibition caused by AMP. The properties of the S. marcescens HY strain and Serratia liquefaciens ADPglucose pyrophosphorylase were found to be similar to the above two S. marcescens enzymes with respect to activation and inhibition. These observations provide another example where the properties of an enzyme found in the genus Serratia have been found to be different from the properties of the same enzyme present in the enteric genera Escherichia, Salmonella, Shigella, Citrobacter, and Enterobacter.

Similar articles

See all similar articles

Cited by 2 articles


    1. J Bacteriol. 1975 Jan;121(1):239-49 - PubMed
    1. J Biol Chem. 1961 May;236:1372-9 - PubMed
    1. Proc Natl Acad Sci U S A. 1963 Jul;50:156-64 - PubMed
    1. J Biol Chem. 1965 Feb;240:651-62 - PubMed
    1. J Biol Chem. 1951 Nov;193(1):265-75 - PubMed

Publication types

MeSH terms

LinkOut - more resources