The effect of body temperature on the locomotory energetics of lizards

J Comp Physiol B. 1984;155(1):21-7. doi: 10.1007/BF00688787.

Abstract

Oxygen consumption (VO2), carbon dioxide production (VCO2), and stamina were measured in the lizard Tupinambis nigropunctatus running at sustainable and non-sustainable velocities (v) on a motor-driven treadmill. Three experimental groups were measured: field-fresh animals at body temperature (Tb) = 35 degrees C and laboratory-maintained animals at Tb = 35 and 25 degrees C. Mean preferred Tb was determined to be 35.2 degrees C. At 35 degrees C, field-fresh animals had a greater maximal oxygen consumption (VO2max corr) (4.22 vs 3.60 ml O2 g-0.76h-1) and a greater endurance. The net cost of transport (slope of VO2 on v) did not differ between the groups (= 2.60 ml O2 g-0.76)km-1). Velocity at which VO2max is attained (MAS) is 0.84 km h-1. The respiratory exchange ratio (R) exceeded 1.0 at v above MAS, indicating supplementary anaerobic metabolism. At 25 degrees C, VO2max corr was lower (2.34 ml O2 g-0.76h-1) as was endurance, MAS occurring at 0.5 km h-1. Net cost of transport was not significantly different than at 35 degrees C. The effect of Tb on locomotory costs was analyzed for this lizard and other species. It was concluded that the net cost of transport is temperature independent in all species examined and the total cost of locomotion (VO2 v-1) is temperature dependent in Tupinambis (Q10 = 1.4-2.0) and all other species examined except one. The energetic cost of locomotion [(VO2active-VO2rest)v-1], previously reported to be temperature independent in lizards, is temperature dependent in Tupinambis (Q10 = 1.3-1.6) and in two other species.2r

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Body Temperature*
  • Carbon Dioxide
  • Energy Metabolism*
  • Lizards / physiology*
  • Locomotion
  • Oxygen Consumption
  • Physical Exertion*
  • Pulmonary Gas Exchange

Substances

  • Carbon Dioxide