DARPP-32 (dopamine- and cyclic AMP-regulated phosphoprotein, Mr = 32,000) is a major endogenous cytosolic substrate for dopamine- and cyclic AMP-stimulated protein phosphorylation in neurons of the basal ganglia of mammalian brain. It shares many properties with phosphatase inhibitor 1, a substrate for cyclic AMP-dependent protein kinase, and with G-substrate, a substrate for cyclic GMP-dependent protein kinase. We have, therefore, undertaken an analysis of the amino acid sequence around the site at which purified DARPP-32 is phosphorylated by the catalytic subunit of cyclic AMP-dependent protein kinase. The results indicate that DARPP-32 is phosphorylated at a single threonine residue contained in the sequence Arg-Arg-Arg-Pro-Thr(P)-Pro-Ala-Met-Leu-Phe-Arg. This sequence was obtained by automated solid phase sequencing of two overlapping tryptic phosphopeptides and one overlapping chymotryptic phosphopeptide which were purified by reverse-phase high-performance liquid chromatography. A 9-amino acid sequence containing the phosphorylatable threonine residue in DARPP-32 shares 8 identical residues with a sequence containing the phosphorylatable threonine residue in phosphatase inhibitor 1, and shares 5 identical residues with the two identical sequences surrounding the 2 phosphorylatable threonine residues in G-substrate. These observations support the view that DARPP-32, inhibitor 1, and G-substrate are members of a family of regulatory proteins which are involved in the control of protein phosphatase activity by both cyclic AMP and cyclic GMP, but which differ in their cellular and tissue distributions.