Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Nov-Dec;39(6):401-8.
doi: 10.1080/00039896.1984.10545872.

Effects of diet on mercury metabolism and excretion in mice given methylmercury: role of gut flora

Effects of diet on mercury metabolism and excretion in mice given methylmercury: role of gut flora

I R Rowland et al. Arch Environ Health. 1984 Nov-Dec.

Abstract

Mice fed either (1) a pelleted rodent diet, (2) evaporated milk, or (3) a synthetic diet (high protein, low fat) exhibited different rates of whole body mercury elimination and fecal mercury excretion after exposure (per os) to methylmercuric chloride. The percentage of the total mercury body burden present as mercuric mercury was highest (35.3%) in mice fed the synthetic diet (which had the highest rate of mercury elimination) and lowest (6.6%) in the animals having the lowest mercury elimination rate (milk-fed mice). Mice fed the synthetic diet had lower mercury concentrations and had a higher proportion of mercuric mercury in their tissues than the mice from the other dietary groups. Treatment of the mice with antibiotics throughout the experimental period to suppress the gut flora reduced fecal mercury excretion and the dietary differences in whole body retention of mercury. Tissue mercury concentrations and proportion of organic mercury in feces, cecal contents, liver, and kidneys were increased by antibiotic treatment of mice fed the pelleted or synthetic diets. These results are consistent with the theory that demethylation of methylmercury by intestinal microflora is a major factor determining the excretion rate of mercury.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources