Prediction of protein function from sequence properties. Discriminant analysis of a data base
- PMID: 6547351
- DOI: 10.1016/0167-4838(84)90312-1
Prediction of protein function from sequence properties. Discriminant analysis of a data base
Abstract
The protein superfamilies in the National Biomedical Research Foundation sequence data base cluster into six groups that can be distinguished on the basis of four variables characterizing amino acid composition and local sequence properties. The variables are average hydrophobicity, net charge, sequence length and periodic variation in hydrophobic residues along the chain. The clusters they distinguish are: globins; chromosomal proteins; contractile system proteins and respiratory proteins other than cytochromes; enzyme inhibitors and toxins; enzymes except hydrolases; and all other proteins. The overall probability of correctly allocating a given protein to one of these functional groups is 0.76, with the allocation reliability being highest for globins (0.97) and for chromosomal proteins (0.93).
Similar articles
-
Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes.Bioinformatics. 2005 Jan 1;21(1):10-9. doi: 10.1093/bioinformatics/bth466. Epub 2004 Aug 12. Bioinformatics. 2005. PMID: 15308540
-
Prediction of unfolded segments in a protein sequence based on amino acid composition.Bioinformatics. 2005 May 1;21(9):1891-900. doi: 10.1093/bioinformatics/bti266. Epub 2005 Jan 18. Bioinformatics. 2005. PMID: 15657106
-
Prediction of protein structural class by discriminant analysis.Biochim Biophys Acta. 1986 Nov 21;874(2):205-15. doi: 10.1016/0167-4838(86)90119-6. Biochim Biophys Acta. 1986. PMID: 3778917
-
Prediction of the partitioning behaviour of proteins in aqueous two-phase systems using only their amino acid composition.J Chromatogr A. 2008 Jan 18;1178(1-2):134-44. doi: 10.1016/j.chroma.2007.11.064. Epub 2007 Nov 28. J Chromatogr A. 2008. PMID: 18082757
-
Structural divergence and distant relationships in proteins: evolution of the globins.Curr Opin Struct Biol. 2005 Jun;15(3):290-301. doi: 10.1016/j.sbi.2005.05.008. Curr Opin Struct Biol. 2005. PMID: 15922591 Review.
Cited by
-
Label-free protein quantitation using weighted spectral counting.Methods Mol Biol. 2012;893:321-41. doi: 10.1007/978-1-61779-885-6_20. Methods Mol Biol. 2012. PMID: 22665309 Free PMC article.
-
AlzDiscovery: A computational tool to identify Alzheimer's disease-causing missense mutations using protein structure information.Protein Sci. 2024 Oct;33(10):e5147. doi: 10.1002/pro.5147. Protein Sci. 2024. PMID: 39276018 Free PMC article.
-
An automatic representation of peptides for effective antimicrobial activity classification.Comput Struct Biotechnol J. 2020 Feb 26;18:455-463. doi: 10.1016/j.csbj.2020.02.002. eCollection 2020. Comput Struct Biotechnol J. 2020. PMID: 32180904 Free PMC article.
-
HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks.Sci Rep. 2020 Jul 2;10(1):10869. doi: 10.1038/s41598-020-67701-3. Sci Rep. 2020. PMID: 32616760 Free PMC article.
-
Variation in the ACE2 receptor has limited utility for SARS-CoV-2 host prediction.Elife. 2022 Nov 23;11:e80329. doi: 10.7554/eLife.80329. Elife. 2022. PMID: 36416537 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
