Tetrahydromethanopterin, a carbon carrier in methanogenesis

J Biol Chem. 1984 Aug 10;259(15):9447-55.


Evidence obtained by 13C NMR spectroscopy indicates that tetrahydromethanopterin (H4MPT) serves as a carbon carrier for C1 units at the methine, methylene, and methyl levels of oxidation. All three derivatives of H4MPT served as substrates for methanogenesis by cell extracts under a hydrogen atmosphere; in each instance, methane evolved at a rate comparable to that obtained when 2-(methylthio)ethanesulfonic acid was used as the substrate. Each C1 derivative of H4MPT stimulated the reduction of CO2 as efficiently as 2-(methylthio)ethanesulfonic acid. High resolution fast atom bombardment mass spectrometry indicated that the product of the spontaneous reaction of formaldehyde with H4MPT was methylene-H4MPT, with the molecular formula C31H45N6O16P. 13C NMR spectroscopy of hexamethylenetetramine, a model compound, suggested that the methylene group in methylene-H4MPT was bound to two nitrogen atoms. Molecular formulas of C31H44N6O16P and C31H47N6O16P were assigned to methenyl-H4MPT+, and methyl-H4MPT, by high resolution fast atom bombardment mass spectrometry. 1H NMR spectroscopy of methyl-H4MPT indicated that the methyl group was bound to a nitrogen atom. Sensitivity of each derivative to oxygen was noted. Apparent extinction coefficients of H4MPT and its derivatives were recorded. Evidence for the enzymatic synthesis of methylene-H4MPT from methenyl-H4MPT+ is presented.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Chemical Phenomena
  • Chemistry, Physical
  • Chromatography, Gel
  • Euryarchaeota / metabolism*
  • Gas Chromatography-Mass Spectrometry
  • Magnetic Resonance Spectroscopy
  • Mass Spectrometry
  • Methane / biosynthesis
  • Pterins / metabolism*
  • Spectrometry, Fluorescence


  • Pterins
  • 5,6,7,8-tetrahydromethanopterin
  • Methane