Two spatio-temporal filters in human vision. 1. Temporal and spatial frequency response characteristics

Biol Cybern. 1983;47(3):173-90. doi: 10.1007/BF00337007.


We have studied visual detection of a circular target moving across a spatially and/or temporally modulated background. Illumination, It, for threshold detection of the target has been measured as a function of background modulation frequency and changes in It associated with background modulation provide a means of determining the frequency response characteristics of visual channels. Temporal frequency responses obtained with temporally modulated, spatially uniform backgrounds have pass-band characteristics and the temporal frequency for peak response increases with increase in mean background illumination. These temporal frequency responses resemble those of the de Lange (1954) filter, but the latter incorporates the incremental thresholds for steady backgrounds. The amplitude of this temporal response saturates at low (approximately 40%) background modulation, decreases to zero as the target velocity falls to zero, and is maximum for a circular target of diameter 2 degrees. The spatial characteristics of this temporal filter were measured with a background field consisting of alternate steady and flickering bars. The resulting spatial frequency curve peaks at 1 cycle deg-1 for all background illuminations and is independent of the background grating orientation. This spatial response differs significantly from the IMG spatial functions observed with a background grating (Barbur and Ruddock, 1980). The spatial and temporal responses reviewed above exhibit similar parametric variations and we therefore associate them with a single spatio-temporal filter, ST2. A second temporal response, with low-pass frequency characteristics, was observed with a background field consisting of two matched gratings, presented in spatial and temporal antiphase. This response has parametric properties similar to those of the IMG spatial response described previously by Barbur and Ruddock (1980), thus we associated the two sets of data with a single spatio-temporal filter, ST1. We show that the ST2 responses can be obtained by combining ST1 responses, and we present a network incorporating the two filters. We review other psychophysical studies which imply the activity of two spatio-temporal filters with properties of the kind revealed in our studies. We argue that filter ST1 has properties equivalent to those of X-type and filter ST2 has properties equivalent to those of Y-type electrophysiological mechanisms.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Depth Perception / physiology
  • Female
  • Humans
  • Male
  • Motion Perception / physiology*
  • Pattern Recognition, Visual / physiology
  • Time Factors
  • Vision, Ocular / physiology*
  • Visual Perception / physiology*