Breathing patterns during submaximal and maximal exercise in elite oarsmen

J Appl Physiol Respir Environ Exerc Physiol. 1983 Aug;55(2):440-6. doi: 10.1152/jappl.1983.55.2.440.


Continuous breath-by-breath measurements of ventilatory parameters were performed during submaximal and maximal treadmill exercise in 21 highly conditioned oarsmen. Average maximum values of O2 uptake, minute ventilation (VI), tidal volume (VT), and respiratory frequency (f) were 6.60 l/min (73.5 ml X kg-1 X min-1), 200 l/min, 3.29 l, and 62 breaths/min, respectively. During the transition from moderate to heavy submaximal exercise, VT and f increased progressively. At near-maximal to maximal work loads, VT plateaued and then decreased slightly, while f continued to increase. Increase in f at the start of exercise was achieved predominantly by an abrupt decrease in expiratory duration (TE) with an equally abrupt, but much smaller, decrease in inspiratory duration (TI). During the transition from submaximal to maximal exercise, both TE and TI decreased progressively. Although f appeared to be entrained by stepping rate in a few subjects, the dominant trend during submaximal to maximal exercise was characterized by a relatively small increase in stepping rate with a much larger increment in f. Our data are consistent with the conclusion that exercise breathing patterns are determined by many interacting factors that vary at different work loads, in different individuals, and are probably also influenced by physical conditioning and previous experience.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Humans
  • Male
  • Physical Exertion*
  • Pulmonary Gas Exchange
  • Pulmonary Ventilation
  • Respiration*
  • Sports Medicine*
  • Time Factors