Effects of adrenaline and of spontaneous labour on the secretion and absorption of lung liquid in the fetal lamb

J Physiol. 1983 Nov;344:137-52. doi: 10.1113/jphysiol.1983.sp014929.


In the chronically catheterized fetal lamb, intravenous infusion of adrenaline at 0.5 microgram/min produced slowing of the secretion of lung liquid or its absorption, an effect which increased exponentially with advancing gestation. Between 120 and 130 days, the characteristic response was slowing of secretion, whereas after 130 days it was absorption. Stimulus-response curves, relating secretion or absorption rate to plasma adrenaline concentration, were obtained by infusing adrenaline into the fetus intravenously at rates between 0.1 and 1.0 microgram/min (0.55-5.5 nmol/min). These curves allowed estimation of the minimum concentration of adrenaline required to inhibit secretion [( Ai]) and this was found to decrease from 0.43 ng/ml. (2.35 nM) at 132-4 days' gestation to 0.029 ng/ml. (0.16 nM) at gestations above 140 days. During spontaneous labour there was a slowing of lung liquid secretion in the early stages followed by absorption during the last 50-150 min. The mean concentration of adrenaline in plasma increased from 0.087 ng/ml. (0.48 nM) in early labour to 6.86 ng/ml. (37.5 nM) in the last 50 min and to 7.17 ng/ml. (39.2 nM) in the early post-natal period. Mean noradrenaline levels at the same times were 1.71 ng/ml. (10.1 nM), 12.14 ng/ml. (71.8 nM) and 9.10 ng/ml. (53.9 nM). The relationship between the plasma adrenaline concentration and the rate of absorption during labour was similar to that found when adrenaline was infused at various rates into the non-labouring fetus of comparable gestational age. The upper airway of the fetus was shown to be capable of acting as a one-way valve allowing outflow but not inflow of liquid. Thus withdrawal of liquid at 5-20 ml./hr from the fetal trachea below the larynx caused closure of the upper airway and this result was obtained both when the recurrent laryngeal nerves were intact and when they were divided.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Absorption
  • Animals
  • Body Fluids / drug effects
  • Body Fluids / metabolism*
  • Catecholamines / blood
  • Epinephrine / pharmacology*
  • Female
  • Gestational Age
  • Labor, Obstetric*
  • Lung / drug effects
  • Lung / embryology
  • Lung / metabolism*
  • Pregnancy
  • Sheep


  • Catecholamines
  • Epinephrine