Effect of diet on plasma acid-base composition in normal humans

Kidney Int. 1983 Nov;24(5):670-80. doi: 10.1038/ki.1983.210.


Steady-state plasma and urine acid-base composition was assessed in 19 studies of 16 normal subjects who ingested constant amounts of one of three diets that resulted in different rates of endogenous noncarbonic acid production (EAP) within the normal range. Renal net acid excretion (NAE) was used to quantify EAP since the two variables are positively correlated in normal subjects. A significant positive correlation was observed between plasma [H+] and plasma PCO2, and between plasma [HCO3-] and plasma PCO2, among the subjects. Multiple correlation analysis revealed a significant interrelationship among plasma [H+], plasma PCO2, and NAE (r = 0.71, P less than 0.001), and among plasma [HCO3-], plasma PCO2, and NAE (r = 0.77, P less than 0.001). The partial correlation coefficients indicated a significant positive correlation between plasma [H+] and NAE, and a significant negative correlation between plasma [HCO3-] and NAE, when plasma PCO2 was held constant. These findings indicate that two factors influence the level at which plasma [H+] is maintained in normal subjects: (1) the steady-state rate of endogenous noncarbonic acid production, and (2) the setpoint at which plasma PCO2 is regulated by the respiratory system. Plasma [HCO3-] is also co-determined by these two factors. In disease states, therefore, both factors must be known before a disturbance in acid-base homeostasis can be excluded.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acid-Base Equilibrium*
  • Adult
  • Bicarbonates / blood
  • Bicarbonates / urine
  • Diet*
  • Female
  • Humans
  • Hydrogen-Ion Concentration
  • Male
  • Plasma / metabolism*
  • Urine / metabolism


  • Bicarbonates