The degradation of cholic acid by Pseudomonas sp. N.C.I.B. 10590 under anaerobic conditions

Biochem J. 1983 Dec 15;216(3):641-54. doi: 10.1042/bj2160641.

Abstract

The bacterial degradation of cholic acid under anaerobic conditions by Pseudomonas sp. N.C.I.B. 10590 was studied. The major unsaturated neutral compound was identified as 12 beta-hydroxyandrosta-4,6-diene-3,17-dione, and the major unsaturated acidic metabolite was identified as 12 alpha-hydroxy-3-oxochola-4,6-dien-24-oic acid. Eight minor unsaturated metabolites were isolated and evidence is given for the following structures: 12 alpha-hydroxyandrosta-4,6-diene-3,17-dione, 12 beta,17 beta-dihydroxyandrosta-4,6-dien-3-one, 12 beta-hydroxyandrosta-1,4,6-triene-3,17-dione, 12 beta,17 beta-dihydroxyandrosta-1,4,6-trien-3-one, 12 beta-hydroxyandrosta-1,4,6-triene-3,17-dione, 12 beta,17 beta-dihydroxyandrosta-1,4,6-trien-3-one, 12 alpha-hydroxyandrosta-1,4-diene-3,17-dione, 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione, 3,12-dioxochola-4,6-dien-24-oic acid and 12 alpha-hydroxy-3-oxopregna-4,6-diene-20-carboxylic acid. In addition, a major saturated neutral compound was isolated and identified as 3 beta,12 beta-dihydroxy-5 beta-androstan-17-one, and the only saturated acidic metabolite was 7 alpha,12 alpha-dihydroxy-3-oxo-5 beta-cholan-24-oic acid. Nine minor saturated neutral compounds were also isolated, and evidence is presented for the following structures: 12 beta-hydroxy-5 beta-androstane-3,17-dione, 12 alpha-hydroxy-5 beta-androstane-3,17-dione, 3 beta,12 alpha-dihydroxy-5 beta-androstan-17-one, 3 alpha,12 beta-androstan-17-one, 3 alpha,12 alpha-dihydroxy-5 beta-androstan-17-one, 5 beta-androstane-3 beta,12 beta,17 beta-triol, 5 beta-androstane-3 beta,12 alpha,17 beta-triol, 5 beta-androstane-3 alpha,12 beta,17 beta-triol and 5 beta-androstane-3 alpha,12 alpha,17 beta-triol. The induction of 7 alpha-dehydroxylase and 12 alpha-dehydroxylase enzymes is discussed, together with the significance of dehydrogenation and ring fission under anaerobic conditions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anaerobiosis
  • Chemical Phenomena
  • Chemistry
  • Cholic Acid
  • Cholic Acids / metabolism*
  • Mass Spectrometry
  • Pseudomonas / metabolism*

Substances

  • Cholic Acids
  • Cholic Acid