Mechanism and dynamics of conformational ordering in xanthan polysaccharide

J Mol Biol. 1984 May 25;175(3):371-94. doi: 10.1016/0022-2836(84)90354-1.

Abstract

The thermally induced order-disorder transition of xanthan (extracellular bacterial polysaccharide from Xanthomonas campestris) has been investigated by optical rotation, differential scanning calorimetry, stopped-flow reaction kinetics and low-angle laser light scattering, and the results have been analysed in terms of Zimm -Bragg helix-coil transition theory. The reciprocal of the transition midpoint temperature (Tm) varies linearly with the logarithm of cation (K+) the salt dependence of Tm, is in agreement with Manning polyelectrolyte theory the ordered structure. The associated increase in cation binding, calculated from the salt dependence of tm, is in agreement with the Manning polyelectrolyte theory for one of the candidate structures from X-ray diffraction, a 5(1) single helix stabilized by packing of side-chains along the polymer backbone, but not for the alternative double-helix structure that has also been proposed. At each salt concentration, the two fundamental parameters of the Zimm -Bragg theory, s and sigma, were calculated. The equilibrium constant for growth of the ordered structure (s) is derived directly from calorimetric measurement of transition enthalpy (delta Hcal ), and sigma, which quantifies the relative instability of the helix nucleus, is derived from the ratio of delta Hcal to the apparent transition enthalpy (delta Happ ) obtained by van't Hoff analysis of the optical rotation data. The temperature course of conformational ordering calculated theoretically is in good quantitative agreement with experimental results from both optical rotation and scanning calorimetry. The calculated average length of stable, ordered chain-sequences increases with decreasing temperature, but equals or exceeds the total chain length from light scattering only at temperatures more than approximately equal to 70 K below Tm, suggesting that ordered and disordered regions may co-exist within the same xanthan molecule. Consistent with this interpretation, the observed rate of conformational ordering increases sharply under conditions where the starting solution for dynamic measurements is partially ordered, suggesting that ordered sequences within each chain may act as helix nuclei for adjacent disordered regions, so that helix growth, rather than the slower nucleation process, becomes rate limiting.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calorimetry, Differential Scanning
  • Carbohydrate Conformation
  • Kinetics
  • Lasers
  • Mathematics
  • Optical Rotation
  • Polysaccharides, Bacterial*
  • Temperature

Substances

  • Polysaccharides, Bacterial
  • xanthan gum