Human breathing patterns on mouthpiece or face mask during air, CO2, or low O2

J Appl Physiol Respir Environ Exerc Physiol. 1982 Nov;53(5):1281-90. doi: 10.1152/jappl.1982.53.5.1281.


Steady-state breathing patterns on mouthpiece and noseclip (MP) and face mask (MASK) during air and chemostimulated breathing were obtained from pneumotachometer flow. On air, all 10 subjects decreased frequency (f) and increased tidal volume (VT) on MP relative to that on MASK without changing ventilation (VE), mean inspiratory flow (VT/TI), or mean expiratory flow (VT/TE). On elevated CO2 and low O2, MP exaggerated the increase in VE, f, and VT/TE due to profoundly shortened TE. On elevated CO2, MASK exaggerated VT increase with little change in f. Increased VE and VT/TI were thus due to increased VT. During low O2 on MASK, both VT and f increased. During isocapnia, shortened TE accounted for increased f; during hypocapnia, increased f was related primarily to shortened TI. Thus the choice of a mouthpiece or face mask differentially alters breathing pattern on air and all components of ventilatory responses to chemostimuli. In addition, breathing apparatus effects are not a simple consequence of a shift from oronasal to oral breathing, since a noseclip under the mask did not change breathing pattern from that on mask alone.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Air*
  • Carbon Dioxide*
  • Female
  • Humans
  • Male
  • Masks*
  • Mouth Protectors*
  • Oxygen*
  • Pulmonary Ventilation
  • Respiration*
  • Time Factors


  • Carbon Dioxide
  • Oxygen