The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone)
- PMID: 6838976
- PMCID: PMC1329191
- DOI: 10.1016/S0006-3495(83)84449-X
The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone)
Abstract
We propose a simple model that accounts for the ability of the weak acid FCCP (Carbonylcyanide-p-trifluoromethoxyphenylhydrazone) to both transport protons across phospholipid bilayer membranes and uncouple oxidation from phosphorylation in mitochondria. Four parameters are required to characterize this model: the rate constant for the movement of A- across the membrane, kA, the rate constant for the movement of HA across the membrane, kHA, the adsorption coefficient of A- onto the membrane-solution interface, beta A, and the surface pK. These four parameters were determined from kinetic measurements on planar bilayer membranes using the charge-pulse and voltage-clamp techniques. We confirmed the adequacy of the model by determining each of these parameters independently, utilizing equilibrium dialysis, zeta potential, membrane potential, spectrophotometric, and conductance measurements. For a phosphatidylethanolamine bilayer the values of the parameters are kHA = 10(4)S-1, beta A = 3 10(-3) cm, and 6.0 less than pK less than 6.4. As predicted theoretically, the value of KA depends on both the applied voltage, V, and dielectric constant of the membrane, epsilon r; when V approaches zero and the membrane contains chlorodecane (epsilon r congruent to 2.7) kA = 700 s-1. If oxidation is coupled to phosphorylation by means of a delta microH+, and V er congruent to 2.7 for the inner membrane of the mitochondrion, the model predicts that FCCP should exert maximal uncoupling activity at a pH congruent to pK. This prediction agrees with the published experimental results.
Similar articles
-
The kinetic mechanism by which CCCP (carbonyl cyanide m-chlorophenylhydrazone) transports protons across membranes.J Membr Biol. 1984;82(2):179-90. doi: 10.1007/BF01868942. J Membr Biol. 1984. PMID: 6096547
-
Restoration of membrane potential in mitochondria deenergized with carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP).Biochim Biophys Acta. 1982 Nov 15;682(2):289-92. doi: 10.1016/0005-2728(82)90110-4. Biochim Biophys Acta. 1982. PMID: 7171582
-
Contribution of electrogenic ion transport to impedance of the algae Valonia utricularis and artificial membranes.Biophys J. 1994 Oct;67(4):1582-93. doi: 10.1016/S0006-3495(94)80631-9. Biophys J. 1994. PMID: 7819490 Free PMC article.
-
FCCP depolarizes plasma membrane potential by activating proton and Na+ currents in bovine aortic endothelial cells.Pflugers Arch. 2002 Jan;443(3):344-52. doi: 10.1007/s004240100703. Epub 2001 Oct 6. Pflugers Arch. 2002. PMID: 11810202
-
"Mild" uncoupling of mitochondria.Biosci Rep. 1997 Jun;17(3):273-9. doi: 10.1023/a:1027380527769. Biosci Rep. 1997. PMID: 9337482 Review.
Cited by
-
Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases.Cells. 2019 Jul 30;8(8):795. doi: 10.3390/cells8080795. Cells. 2019. PMID: 31366145 Free PMC article. Review.
-
Dimethonium, a divalent cation that exerts only a screening effect on the electrostatic potential adjacent to negatively charged phospholipid bilayer membranes.J Membr Biol. 1983;76(2):183-93. doi: 10.1007/BF02000618. J Membr Biol. 1983. PMID: 6242893
-
Water chains in lipid bilayers.Biophys J. 1996 Aug;71(2):543. doi: 10.1016/S0006-3495(96)79258-5. Biophys J. 1996. PMID: 8842193 Free PMC article. No abstract available.
-
Abnormal mitochondrial transport and morphology as early pathological changes in human models of spinal muscular atrophy.Dis Model Mech. 2016 Jan;9(1):39-49. doi: 10.1242/dmm.021766. Epub 2015 Nov 19. Dis Model Mech. 2016. PMID: 26586529 Free PMC article.
-
Mitochondria-originated redox signalling regulates KLF-1 to promote longevity in Caenorhabditis elegans.Redox Biol. 2022 Dec;58:102533. doi: 10.1016/j.redox.2022.102533. Epub 2022 Nov 19. Redox Biol. 2022. PMID: 36442394 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
