To understand the basis of hypothalamic neuronal thermosensitivity, single-unit activity was recorded in vitro, from constantly perfused tissue slices of rat preoptic area and anterior hypothalamus, PO/AH. The firing rate and thermosensitivity of individual PO/AH neurons was determined before, during, and after tissue perfusion with a synaptic blocking medium, containing elevated magnesium and decreased calcium concentrations. During synaptic blockade, thermosensitivity was retained in nearly all of the warm-sensitive neurons, and some temperature-insensitive neurons showed increased warm sensitivity. The thermosensitivity of all cold-sensitive neurons was lost during synaptic blockade. These results support the hypothesis that PO/AH cold-sensitive neurons depend on synapses from nearby warm-sensitive neurons for their temperature sensitivity; whereas warm sensitivity is an independent property of certain PO/AH neurons.