Red cell membrane response to hydrogen peroxide-sensitivity in hereditary xerocytosis and in other abnormal red cells

Br J Haematol. 1981 Jul;48(3):435-44. doi: 10.1111/j.1365-2141.1981.tb02735.x.

Abstract

Osmotically resistant red cells associated with some haemolytic anaemias, including hereditary xerocytosis, sickle-cell disease and beta thalassaemia minor, are more sensitive than normal red cells to exogenous in vitro hydrogen peroxide (H2O2). This sensitivity is manifested by a rapid loss of intracellular potassium, shape change, protein aggregation, and methaemoglobin formation at lower concentrations of H2O2 (225 microM) than are required to induce similar effects in normal red cells (450 microM). Malonyldialdehyde (MDA) formation occurs later than the other effects and can be inhibited by the antioxidant, butylated hydroxytoluene (BHT), without affecting protein aggregation or potassium leak. Incubation of normal red cells directly with MDA induces protein aggregation, but only after 1 h of incubation. Although nystatin-sucrose treated normal cells which are dehydrated with altered cation content, and therefore osmotically resistant, do not display abnormal H2O2 hypersensitivity as manifested by excessive potassium permeability, they do show an increase in methaemoglobin formation and protein aggregation similar to xerocytes. These data indicate that membrane protein cross-linking occurring immediately following H2O2 exposure seems independent of either the sulfhydryl or MDA mechanisms, and that the membrane permeability of the abnormal red cells predisposes them to oxidative damage.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Anemia, Hemolytic, Congenital / blood*
  • Anemia, Sickle Cell / blood
  • Desiccation
  • Electrophoresis, Polyacrylamide Gel
  • Erythrocyte Membrane / drug effects*
  • Erythrocytes / drug effects*
  • Erythrocytes, Abnormal / drug effects*
  • Humans
  • Hydrogen Peroxide / pharmacology*
  • Malondialdehyde / blood
  • Methemoglobin / biosynthesis
  • Osmotic Fragility
  • Potassium / blood
  • Thalassemia / blood

Substances

  • Malondialdehyde
  • Methemoglobin
  • Hydrogen Peroxide
  • Potassium