Effect of pedaling rate on submaximal exercise responses of competitive cyclists

J Appl Physiol Respir Environ Exerc Physiol. 1981 Aug;51(2):447-51. doi: 10.1152/jappl.1981.51.2.447.

Abstract

This investigation was undertaken to determine the effect of pedal frequency on submaximal exercise responses. Seven well-trained competitive cyclists were studied riding their road-racing bicycles on a motor-driven treadmill at 80% of maximum O2 consumption (VO2 max) using different gear ratios. Cyclists were also studied during a series of unloaded trials to assess the effects of varying rates of limb movements independent of external work load. Heart rate (HR) increased, whereas net HR (after subtracting the HR during unloaded cycling) decreased with increasing pedal frequency during loaded cycling. Expiratory flow (VE), O2 consumption (VO2), blood lactate, net VO2 (after subtracting the VO2 of unloaded cycling), and net VE (after subtracting the VE during unloaded cycling) were quadratically related to pedal frequency. The quadratic relationships evident after corrections were made for the additional work needed to move the legs more frequently may be explained at the lower pedaling rates by a less uniform pattern of blood flow caused by increasing the force requirement per pedal stroke and, at the higher pedal frequencies, by the recruitment of additional musculature to stabilize the trunk. The average of preferred frequency for the group, which was also the most economical pedaling rate judged by most of the variables was 91 rpm, although the preferred pedaling rate for each subject ranged from 72 to 102 rpm.

MeSH terms

  • Heart Rate
  • Humans
  • Lactates / blood
  • Oxygen Consumption
  • Physical Exertion*
  • Pulmonary Ventilation
  • Sports Medicine*

Substances

  • Lactates