Microwave-induced increase of water and conductivity in submaxillary salivary gland of rats

Bioelectromagnetics. 1981;2(1):51-60. doi: 10.1002/bem.2250020106.

Abstract

Hypersalivation is an important mechanism for heat dissipation by animals without sweat glands. The water content and conductivity (at 20 kHz) in submaxillary salivary glands (SSG) and in other tissues were investigated in adult male rats exposed to microwaves (2880 MHz, 1.5 microsecond pulses at 1000 Hz) or to conventional heat at 40 degrees C. Eighty rats in one series were exposed, one at a time, for 30 min to microwaves producing a specific absorption rate (SAR) of 4.2, 6.3, 6.8, 8.4, 10.8 or 12.6 W/kg. Fifty rats were sham-exposed under similar environmental conditions. In the second series, ten rats were sham-exposed, 33 rats were exposed one at time, for 15, 30 or 60 min to microwaves at a SAR of 9.5 W/kg, and 32 rats were exposed for similar periods to conventional heat at 40 degrees C. In rats of the first series colonic temperatures were elevated significantly at a SAR of 4.2 W/kg, while SSG water content and conductivity increased significantly at SAR values of 6.3 W/kg and higher. In the second series of experiments increases in colonic temperature and SSG water content were greater after 15 and 30 min of microwave exposure than after exposure to heat. Also, SSG conductivity was significantly depressed by heat and significantly increased by microwaves after exposure for 15 or 30 min. The results support the hypothesis that water content and conductivity of SSG of rats can be used as a sensitive specific test of a microwave induced thermal response.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Body Temperature / radiation effects
  • Body Water / radiation effects*
  • Electric Conductivity*
  • Energy Transfer
  • Kinetics
  • Male
  • Microwaves*
  • Rats
  • Rats, Inbred Strains
  • Submandibular Gland / radiation effects*