The spectro-temporal receptive field. A functional characteristic of auditory neurons
- PMID: 7326288
- DOI: 10.1007/BF00336731
The spectro-temporal receptive field. A functional characteristic of auditory neurons
Abstract
The Spectro-Temporal Receptive Field (STRF) of an auditory neuron has been introduced experimentally on the base of the average spectro-temporal structure of the acoustic stimuli which precede the occurrence of action potentials (Aertsen et al., 1980, 1981). In the present paper the STRF is considered in the general framework of nonlinear system theory, especially in the form of the Volterra integral representation. The STRF is proposed to be formally identified with a linear functional of the second order Volterra kernel. The experimental determination of the STRF leads to a formulation in terms of the Wiener expansion where the kernels can be identified by evaluation of the system's input-output correlations. For a Gaussian stimulus ensemble and a nonlinear system with no even order contributions of order higher than two, it is shown that the second order cross correlation of stimulus and response, normalized with respect to the spectral contents of the stimulus ensemble, leads to the stimulus-invariant spectro-temporal receptive field. The investigation of stimulus-invariance of the STRF for more general nonlinear systems and for stimulus ensembles which can be generated by nonlinear transformations of Gaussian noise involve the evaluation of higher order stimulus-response correlation functions.
Similar articles
-
A comparison of the spectro-temporal sensitivity of auditory neurons to tonal and natural stimuli.Biol Cybern. 1981;42(2):145-56. doi: 10.1007/BF00336732. Biol Cybern. 1981. PMID: 6976799
-
Spectro-temporal characteristics of single units in the auditory midbrain of the lightly anaesthetised grass frog (Rana temporaria L) investigated with noise stimuli.Hear Res. 1981 Nov;5(2-3):147-78. doi: 10.1016/0378-5955(81)90043-5. Hear Res. 1981. PMID: 6975772
-
New variations on the derivation of spectro-temporal receptive fields for primary auditory afferent axons.Hear Res. 2003 Dec;186(1-2):30-46. doi: 10.1016/s0378-5955(03)00257-0. Hear Res. 2003. Corrected and republished in: Hear Res. 2004 Mar;189(1-2):120-36. doi: 10.1016/s0378-5955(03)00406-4 PMID: 14644457 Corrected and republished.
-
Context dependence of spectro-temporal receptive fields with implications for neural coding.Hear Res. 2011 Jan;271(1-2):123-32. doi: 10.1016/j.heares.2010.01.014. Epub 2010 Feb 1. Hear Res. 2011. PMID: 20123121 Review.
-
How do auditory cortex neurons represent communication sounds?Hear Res. 2013 Nov;305:102-12. doi: 10.1016/j.heares.2013.03.011. Epub 2013 Apr 17. Hear Res. 2013. PMID: 23603138 Review.
Cited by
-
Rapid synaptic depression explains nonlinear modulation of spectro-temporal tuning in primary auditory cortex by natural stimuli.J Neurosci. 2009 Mar 18;29(11):3374-86. doi: 10.1523/JNEUROSCI.5249-08.2009. J Neurosci. 2009. PMID: 19295144 Free PMC article.
-
Sustained firing of model central auditory neurons yields a discriminative spectro-temporal representation for natural sounds.PLoS Comput Biol. 2013;9(3):e1002982. doi: 10.1371/journal.pcbi.1002982. Epub 2013 Mar 28. PLoS Comput Biol. 2013. PMID: 23555217 Free PMC article.
-
Auditory cortical responses elicited in awake primates by random spectrum stimuli.J Neurosci. 2003 Aug 6;23(18):7194-206. doi: 10.1523/JNEUROSCI.23-18-07194.2003. J Neurosci. 2003. PMID: 12904480 Free PMC article.
-
Neural representation of spectral and temporal information in speech.Philos Trans R Soc Lond B Biol Sci. 2008 Mar 12;363(1493):923-45. doi: 10.1098/rstb.2007.2151. Philos Trans R Soc Lond B Biol Sci. 2008. PMID: 17827107 Free PMC article.
-
Parallel and distributed encoding of speech across human auditory cortex.Cell. 2021 Sep 2;184(18):4626-4639.e13. doi: 10.1016/j.cell.2021.07.019. Epub 2021 Aug 18. Cell. 2021. PMID: 34411517 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Other Literature Sources