Specificity of monosynaptic connections from thalamus to visual cortex

Nature. 1995 Nov 16;378(6554):281-4. doi: 10.1038/378281a0.


In cortical area 17 of the cat, simple receptive fields are arranged in elongated subregions that respond best to bright (on) or dark (off) oriented contours, whereas the receptive fields of their thalamic inputs have a concentric on and off organization. This dramatic transformation suggests that there are specific rules governing the connections made between thalamic and cortical neurons (see ref. 4). Here we report a study of these rules in which we recorded from thalamic (lateral geniculate nucleus; LGN) and cortical neurons simultaneously and related their receptive fields to their connectivity, as measured by cross-correlation analysis. The probability of finding a monosynaptic connection was high when a geniculate receptive field was superimposed anywhere over an elongated simple-cell subregion of the same signature (on or off). However, 'inappropriate' connections from geniculate cells of the opposite receptive field signature were extremely rare. Together, these findings imply that the outline of the elongated, simple receptive field, and thus of cortical orientation selectivity, is laid down at the level of the first synapse from the thalamic afferents.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Brain Mapping
  • Cats
  • Geniculate Bodies / cytology
  • Geniculate Bodies / physiology
  • Neural Pathways / physiology
  • Neurons / physiology
  • Synapses*
  • Thalamus / physiology*
  • Visual Cortex / physiology*