Epithelial cells polarize in response to contacts with the extracellular matrix and with neighboring cells. Interactions of cells with the extracellular matrix are mediated mainly by the integrin family of receptors. To begin to understand the role of integrins in polarization, we have investigated the expression and localization of three integrin families in the polarized Madin-Darby canine kidney (MDCK) epithelial cell line and in transformed MDCK cells lacking apical polarity. We find that MDCK cells express several beta 1 integrins, including alpha 2 beta 1, alpha 3 beta 1, and an unidentified integrin designated alpha x beta 1. The beta 1 integrins are the major receptors for collagens I and IV and laminin in MDCK cells, since a blocking anti-beta 1 antibody almost totally abolishes adhesion to these proteins. They also express a vitronectin receptor tentatively identified as alpha v beta 3, and the epithelial-specific integrin alpha 6 beta 4. The latter is not a laminin receptor in MDCK cells because a function blocking anti-alpha 6 antibody has no effect on cell adhesion to laminin. All three integrin families are expressed exclusively on both the basal and lateral surfaces, as determined by immunofluorescence microscopy and surface biotinylation. Transformed MDCK cells express beta 1 integrins as well as alpha v beta 3 and alpha 6 beta 4, but show alterations in the beta 1 family. Expression of alpha x is lacking, and the relative amount of the beta 1 subunit is diminished, resulting in the accumulation of Endo-H-sensitive alpha 3. In addition, surface biotinylation and immunofluorescence indicate that significant amounts of both alpha 2 beta 1 and alpha 3 beta 1 appear on not only the basolateral but also the apical plasma membrane. These results indicate that integrins are the major receptors for the extracellular matrix in MDCK cells, and that they may affect epithelial cell polarization by mediating not only cell-substratum but also cell-cell contacts.