Reaction of phthalate dioxygenase reductase with NADH and NAD: kinetic and spectral characterization of intermediates

Biochemistry. 1994 Oct 11;33(40):12184-93. doi: 10.1021/bi00206a022.

Abstract

Phthalate dioxygenase reductase (PDR) is an electron transferase that contains FMN, which accepts a hydride from NADH, and a [2Fe-2S] center, which transfers electrons to phthalate dioxygenase. The reduction of PDR by NADH has been studied by stopped-flow spectroscopy. Data from studies using both portio- and deuterio-NADH were analyzed by nonlinear curve fitting and numerical simulation techniques. The results of these analyses indicate that the reductive half-reaction of PDR consists of five distinct kinetic phases: (a) NADH binds to form a primary Michaelis complex (MC-1) (Kd = 50 microM). (b) The enzyme undergoes a structural change (116 +/- 5 s-1) resulting in a charge-transfer complex (CT-1). (c) The next phase in the reaction shows a deuterium isotope effect of 7.0 when (4R)-[2H]NADH (NADD) is substituted for NADH, identifying this step as the one involving hydride transfer. The rate of hydride transfer from NADH to FMN is 70 s-1, and this process results in a charge-transfer intermediate between the flavin hydroquinone anion and NAD (CT). (d) Internal electron transfer from the flavin to the iron-sulfur center, which is only 35 +/- 4 s-1, then results in an intermediate consisting of a reduced [2Fe-2S] center and a neutral flavin semiquinone (SQ). It is surprising that this rate is so slow, since the shortest interatomic distance between these centers is only 4.7 A [Correll, C. C., et al. (1992) Science 258, 1604-1610]. The 2-electron-reduced form of PDR (SQ in Figure 1) binds weakly to the reaction product, NAD (Kd = 3.7 mM), but forms a tight complex with NADH (Kd = 10 microM). (e) Two molecules of the reduced iron-sulfur flavin semiquinone (SQ) form of PDR then undergo a relatively slow second-order disproportionation reaction, resulting in one molecule of 3-electron-reduced PDR and one molecule of 1-electron-reduced PDR. The latter reacts rapidly with excess NADH to form a 3-electron-reduced PDR.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Burkholderia cepacia / enzymology
  • Electron Transport
  • Flavins / chemistry
  • Kinetics
  • NAD / chemistry*
  • NAD / metabolism
  • Oxidation-Reduction
  • Oxidoreductases / chemistry*
  • Oxidoreductases / metabolism
  • Spectrophotometry

Substances

  • Flavins
  • NAD
  • Oxidoreductases
  • phthalate oxygenase reductase